Neighborhood connected edge domination in graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neighborhood Connected Equitable Domination in Graphs

Let G = (V,E) be a connected graph, An equitable dominating S of a graph G is called the neighborhood connected equitable dominating set (nced-set) if the induced subgraph 〈Ne(S)〉 is connected The minimum cardinality of a nced-set of G is called the neighborhood connected equitable domination number of G and is denoted by γnce(G). In this paper we initiate a study of this parameter. For any gra...

متن کامل

The edge domination number of connected graphs

A subset X of edges in a graph G is called an edge dominating set of G if every edge not in X is adjacent to some edge in X. The edge domination number γ′(G) of G is the minimum cardinality taken over all edge dominating sets of G. Let m,n and k be positive integers with n − 1 ≤ m ≤ (n 2 ) , G(m,n) be the set of all non-isomorphic connected graphs of order n and size m, and G(m,n; k) = {G ∈ G(m...

متن کامل

Edge Domination in Graphs

Let G be a (p, q)-graph with edge domination number γ′ and edge domatic number d′. In this paper we characterize connected graphs for which γ′ = p/2 and graphs for which γ′ + d′ = q + 1. We also characterize trees and unicyclic graphs for which γ′ = bp/2c and γ′ = q −∆′, where ∆′ denotes the maximum degree of an edge in G.

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

Generalized connected domination in graphs

As a generalization of connected domination in a graph G we consider domination by sets having at most k components. The order γ c (G) of such a smallest set we relate to γc(G), the order of a smallest connected dominating set. For a tree T we give bounds on γ c (T ) in terms of minimum valency and diameter. For trees the inequality γ c (T ) ≤ n− k − 1 is known to hold, we determine the class o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tamkang Journal of Mathematics

سال: 2012

ISSN: 2073-9826,0049-2930

DOI: 10.5556/j.tkjm.43.2012.710